Recap

Here is a recap of all definitions and propositions relevant for the exam and presented in the lectures and published material.

    • Raum, is a -Al. iff (i) (ii) (iii)
    • is a w-MaรŸ iff (i) (ii) .
    • Farben, mit Reihenfolge, mit Zurรผcklegen: ,
    • Farben, mit Reihenfolge, ohne Zรผrucklegen: inj., ==?==. L.1
    • Multindex Notation: , , . L.2
    • Farben, mit Reihenfolge innerhalb d. Farbe , .
    • Farben, ohne Reihenfolge innerhalb d. Farbe , .
    • s.t. (i) , (ii) , (iii) .
    • Also (iv) , (v) , (vi)
    • For -al., then is a -al.
    • For , is a -al. , smallest -al. with .
    • , and in general for a topological space L.2 discrete ; else: open. Notice:
    • For , s.t. (i) , (ii) L.3
    • If (ii), (iii) and it is a w-MaรŸ. Consider the set theoretic conseq.
    • For , and if then
    • , or also is an equal distribution on a -dim interval. L.4
    • is -almost sure if .
  • Tools

    • On , 3.1 (Distribution function)
      • (i) , (ii) mon.f., then (iii) . 3.2
    • for , meas., for the respective distribution function , , holds . 3.3;5
    • is -st. gen. of , if is -st. and
    • meas. that agree on a -st. gen., then they are equal.
    • (i) , (ii) , (iii) disj. seq then .
    • for and ,
    • -st. and a dyn.sy. on , then (Dynkin Lemma)
    • is meas. define for .
      • A cont. funciton is meas., also closed under , , , , , , .
        • from meas, consider as a cont. func on func.
      • for tfae: (i) is --meas., (ii)
        • same holds for , , , or since they all generate .
    • . Simply check what I noted in Analysis III (Lecture).
    • just like in Analysis II (Lecture).
  • J, Dichte

    • for , meas. s.t. , then is a meas.
    • Examples:
      • Gleichverteilung: , .
      • Exponentialverteilung: ,
      • GauรŸ Verteilung: for , then .
      • Dirac measure has no Dichte!
  • Quantil

    • prob.meas. on with dis.f., for , elem in are -quantils on .
      • inj. quantil is unique
    • a โ€œquasi-inverseโ€ a -quantil of , hence is the quantil function.
    • for and an index set , , then is -al. on . 4.4;9
    • 4.5;9 (Product -Algebra)
    • (existence and uniqueness of the product measure) 4.6;9
  • and meas. s.t. , then has the dichte: .

    • for , the proj. of the first coord.
    • From 13.3 Iterierte Integrale (The Italians) recall: Tonelli, Fubini
  • Let (i) , (ii) let have a Dichte respect , (iii) -Diffeo on op., then: Dichte, .

  • Conditional Probabilities

    • for , a Ereignis s.t. define 4.10;10
      • is a prob.meas. on
    • for a disj.zer. of s.t. then
    • for a disj.zer. of s.t. , then 4.12;11 (Bayes)
  • Stochastic Independence

    • sto.ind. for if 4.12;11
    • sto.ind. for if: for each , for all s.t. holds: is sto.ind. for .
      • sto.ind. sto.ind.
      • for: , and let distr. of , then sto.ind.
        • in this case also for meas, and sto.ind.
        • for pair. disj. subsets. of , s.t. , and meas. and for sto.ind., then sto.ind.
    • a fam. of -st. set.sys. are sto.ind. if for each if for all s.t. holds is sto.ind. for .
    • for , and then sto.ind. for is a dyn.sys.
  • Theory and Epirie

    • for prob.sp., meas.sp. for indep. and identically distributed if independent and (i.i.d) 5.1;13
      • Notation:
    • for , , if int. write and say: has the th. moment in .
      • check Bsp. 1. at the end of L. 13
    • 5.3;14
      1. is a Linear Space .
      2. (Monotony)
      3. (Cauchy-Schwarz)
    • for , 5.4;14
      • (Variance)
      • (Standardabweichung)
      • (Covariance)
      • (Correlation)
      • then say is centred
        • central th moment of .
    • for , independent, then: 5.5;14
      • (say those are uncorrelated independent, only one direction. A fam. is uncorr. if pairw. uncorr.)
    • for ,
      • for uncorr., then
  • for uncorr., and ident.distr. then: 5.6;15 (Weak principle of big numbers)

    • (ident.distr.)
  • for , and zufallv. s.t. , then (Tschebyschaff Inequality)

  • zufallv., , then:

  • zufallv. and , (conv. in prob.)

  • zufallv., def. (Laplace-Transformation/Momenterzwegende Funktion) 5.10;16

  • zufallv. with real values, and (exp. Tschebyschaff Inequality)

  • for ind. s.t. then

  • for iid zufallv., , s.t. , , then (-fast sicher), 5.12;16 (Strong principle of big numbers)

  • and , then (i) , (ii) and ind. (Borel-Cantelli Lemma)

    • consider and as in Analysis III (Lecture).
    • also: (see exercise)
  • (Skalierung)

  • (Characteristical Function)

    • glm.stet.
    • for zufallv. ind.:
    • (3), (4);18
  • for real zufallv. s.t. and then 5.15;18

  • for real zufallv. uniformely distr. and ind., for , s.t. and , then 5.16;18 (Zentrale Grenzwertsatz)

  • real zufallv. and distr. with Dicht e , then 5.17;18 (Normal Distribution)

    • Standard Normal Distribution if and .
    • for and