m Farben, mit Reihenfolge innerhalb d. Farbe ฮฉฮฑโ:={f:[m]โฃฮฑโฃโฃโkโ[m]โโฃfโ1(k)โฃ=ฮฑkโ}, โฃฮฉโฃ=โฃฮฑโฃ!.
m Farben, ohne Reihenfolge innerhalb d. Farbe ฮฉ~ฮฑโ:=ฮฉฮฑโ/โผ, โฃฮฉ~ฮฑโโฃ=ฮฑ!โฃฮฑโฃ!โ.
ฯ
ฯโP(ฮฉ) s.t. (i) ฮฉโฯ, (ii) AโฯโACโฯ, (iii) โnโคฯโAnโโฯ.
Also (iv) โ โฯ, (v) โnโคฯโAnโโฯ, (vi) AโชB,AโฉB,AโB,AฮBโฯ
For A1โ,A2โฯ-al., then A1โโฉA2โ is a ฯ-al.
For EโP(ฮฉ), ฯฮฉโ(E):=โ{A:A is a ฯ-al. โงEโA}, smallest ฯ-al. with E.
BRโ:=ฯRโ({(a,b):a<b}), and in general BXโ:=ฯXโ(t) for (X,t) a topological space L.2
ฮฉ discrete โF=2ฮฉ; else: ฮฉ=RโF=ฯ({AโR:A open})=BRโ.
Notice: ฯ({(a,b):a<bโงa,bโR})=ฯ({(โโ,q):qโQ})=BRโ
P
For (ฮฉ,A), P:AโR0+โโช{+โ} s.t. (i) P(โ )=0, (ii) P(โจnโคฯโAnโ=โnโคฯโP(Anโ) L.3
If (ii), (iii) P(ฮฉ)=1 and P:Aโ[0,1] it is a w-Maร. Consider the set theoretic conseq.
For (Anโ)nโNโโAN, and if A1โโA2โโ... then limnโโโP(Anโ)=P(โnโNโAnโ)
ฮปdโ(Q)=โi=1dโ(biโโaiโ), or also Aโฆฮปdโ(ฮฉ)ฮปdโ(A)โ is an equal distribution on a d-dim interval. L.4
ฯ(ฯ) is P-almost sure if P({ฯโฮฉ:ยฌฯ(ฯ)})=0.
Tools
On (R,BRโ,P), D:Rโ[0,1],xโฆP((โโ,โ]) 3.1 (Distribution function)
(i) xโคyโD(x)โคD(y), (ii) (xnโ)nโคฯโ mon.f., limnโโโxnโ=x then limnโโโD(xnโ)=D(x) (iii) limxโโโโD(x)=0โงlimxโโโD(x)=1. 3.2
for P, Q meas., for the respective distribution function DPโ, DQโ, holds DPโ=DQโโP=Q. 3.3;5
MโP(ฮฉ) is โฉ-st. gen. of (ฮฉ,A), if M is โฉ-st. and ฯฮฉโ(M)=A
P,Q meas. that agree on a โฉ-st. gen., then they are equal.
D
(i) ฮฉโD, (ii) AโDโACโD, (iii) disj. seq Aiโ then โจiโคnโAiโโD.
for (ฮฉ,A) and P,Q, D:={AโA:P(A)=Q(A)}
Mโฉ-st. and DโP(ฮฉ) a dyn.sy. on ฮฉ, then MโDโฯฮฉโ(M)โD (Dynkin Lemma)
f
f is AโBRโโmeas. define for โBโBRโโfโ1(B)โA.
A cont. funciton is AโBRโโ meas., also closed under +, โ โ โ, โ , โ, โฃโ โฃ, lim, sup.
from fโg meas, consider + as a cont. func on func.
for f:ฮฉโR tfae: (i) f is A-BRโ-meas., (ii) โaโRโ{fโคa}โA
{fโคa}:=fโ1([โโ,a])
same holds for <, >, โฅ, or {aโคf<b} since they all generate BRโ.
โซฮฉโfdฮผ:=sup{โk=1nโฮฑkโฮผ(Akโ):nโNโงโkโ(AkโโAโงฮฑkโโ[0,โ]โโk=1nโฮฑkโ1Akโโโคf)}.
Simply check what I noted in Analysis III (Lecture).
Gauร Verteilung: ฮถฮผ,ฯโ:xโฆ2ฯฯ2โ1โโ exp(โ21โ(ฯxโฮผโ)2) for xโR, then โAโBRโโPฮผ,ฯโ:AโฆโซAโฮถฮผ,ฯโdฮป=โซโโโโฮถฮผ,ฯโdx.
Dirac measure has no Dichte!
Quantil
ฮผ prob.meas. on (R,BRโ) with D dis.f., for yโ(0,1), elem in {xโR:limxโฒโxโD(xโฒ)โคyโคD(x)} are y-quantils on D.
D inj. โ quantil is unique
a โquasi-inverseโ I(y)=sup{xโR:D(x)โคy} a y-quantil of D, hence is I the quantil function.
for (ฮฉ~,A~) and an index set I, โiโIโxiโ:ฮฉโฮฉ~, then ฯ(xiโ,iโI):=ฯ{xiโ1โ(A~):A~โA~โงiโI} is ฯ-al. on ฮฉ. 4.4;9
(existence and uniqueness of the product measure) 4.6;9
(Rn,BRnโ,ฮผ) and ฯ:Rnโ[0,1] meas. s.t. โAโBRnโโฮผ(A)=โซAโฯdฮปRnโ, then Lฮผโ(ฯ) has the dichte: J:Rmโ[0,โ],xโฆโซRnโmโฯ(x,y)dฮปRnโmโ(y).
for ฯ:RnโRm, (x1โ,...,xmโ,...,xnโ)โฆ(x1โ,...,xmโ) the proj. of the first m coord.
Let (i) (Rn,BRnโ,P), (ii) let P have a Dichte f respect ฮปRnโ, (iii) ฮฆ:UโVC1-Diffeo on U,V op., then: LRโ(ฮฆโ1) Dichte, g(y)=(fโฮฆ)(y)โ โฃdet(Dฮฆyโ)โฃ.
for (ฮฉ,A,P), BโA a Ereignis s.t. P(B)>0 define P(AโฃB)=P(B)P(AโฉB)โ 4.10;10
P(โ โฃB):Aโ[0,1],AโฆP(AโฃB) is a prob.meas. on (ฮฉ,A)
for (Akโ)kโNโ a disj.zer. of A s.t. โkโNโP(Akโ)>0 then โBโAโP(B)=โkโNโP(BโฃAkโ)P(Akโ)
for (Akโ)kโNโ a disj.zer. of A s.t. โkโNโP(Akโ)>0, then โBโAโP(B)โP(AkโโฃB)=โdโIโP(BโฃAjโ)P(Ajโ)P(BโฃAkโ)P(Akโ)โ 4.12;11 (Bayes)
Stochastic Independence
(Aiโ)iโIโโA sto.ind. for P if โEโIโ((โฃEโฃ<โโงE๎ =โ )โP(โiโEโAiโ)=โiโEโP(Aiโ)) 4.12;11
(Xiโ)iโIโ sto.ind. for P if: for each Xiโ:(ฮฉ,A)โ(ฮฉiโ,Aiโ), for all (Aiโ)iโIโ s.t. AiโโAiโ holds: ({XiโโAiโ})iโIโ is sto.ind. for P.
for: Xiโ:(R,BRโ)โ(R,BRโ), iโ[n] and let D:Rโ[0,1] distr. of P, then (Xiโ))iโIโ sto.ind. โโ(yiโ)iโ[n]โโRnโP(xiโโคyiโ,iโ[n])=โiโ[n]โDXiโโ(yiโ)
in this case also for ฯkโ:RkโR meas, ฯk(x1โ,...,xkโ) and (xlโ)lโคkโ sto.ind.
for Ikโ pair. disj. subsets. of I, s.t. โฃIkโโฃ<โ, and ฯkโ:RโฃIkโโฃโR meas. and for (Xiโ)iโIโ sto.ind., then (ฯkโโ(Xiโ)iโIโ)kโNโ sto.ind.
(Fiโ)iโIโ a fam. of โฉ-st. set.sys. are sto.ind. if for each โ ๎ =FiโโA if for all (Aiโ)iโIโ s.t. AiโโFiโ holds (Aiโ)iโIโ is sto.ind. for P.
for (ฮฉ,A,P), and BโA then DBโ:={AโA:(A,B) sto.ind. for P} is a dyn.sys.
Theory and Epirie
for (ฮฉ,A,P) prob.sp., (ฮฉ~,A~) meas.sp. Xiโ:(ฮฉ,A)โ(ฮฉ~,A~) for iโI indep. and identically distributed if (Xiโ)iโIโ independent and โi,jโIโLPโ(Xiโ)=LPโ(Xjโ) (i.i.d) 5.1;13
Notation: โxโ=max{zโZ:zโคx}
for X:(ฮฉ,A)โ(R,BRโ), EPโXn:=โซฮฉโXndP=โซฮฉโx(ฯ)ndP(ฯ), if โฃXโฃn int. write XโLn(ฮฉ,A,P) and say: X has the nth. moment in EPโXn.
check Bsp. 1. at the end of L. 13
L1(ฮฉ,A,P) 5.3;14
is a Linear Space โฮฑ,ฮฒโRโโx,yโL1(ฮฉ,A,P)โEPโ[ฮฑx+ฮฒy]=ฮฑEPโ[x]+ฮฒEPโ[y].
covPโ(x,y)=0 (say those are uncorrelated ๎ = independent, only one direction. A fam. is uncorr. if pairw. uncorr.)
for (xiโ)iโNโโL1(ฮฉ,A,P), EPโ(โi=1nโxiโ)=โi=1nโEPโ(xiโ)
for (xiโ)iโIโ uncorr., then varPโ(โi=1nโxiโ)=โi=1nโvarPโ(xiโ)
for xiโโL2(ฮฉ,A,P) uncorr., and ident.distr. then: โฯต>0โP(โฃn1โโi=1nโxiโโEPโx1โโฃโฅฯต)โคnฯต2varPโ(x1โ)โโnโโ0 5.6;15 (Weak principle of big numbers)
for AโA, cโR0+โ and xโฅ0 zufallv. s.t. โฯโAโx(ฯ)โฅc, then EPโxโฅcP(A) (Tschebyschaff Inequality)
x zufallv., m>0, a>0 then: P(โฃxโฃโฅa)โคaโmEPโโฃxโฃm
(xnโ)nโNโ zufallv. and xโR, xnโโถnโโPโxโโฯต>0โlimnโโโP(โฃxnโโxโฃโฅฯต)=0 (conv. in prob.)
x zufallv., def. Lxโ:R0+โโR,sโฆEPโ[esx] (Laplace-Transformation/Momenterzwegende Funktion) 5.10;16
x zufallv. with real values, โaโRโโsโฅ0โEPโ(esx)โฅesaP(xโฅa) and P(xโฅa)โคinfsโฅ0โ(eโsaEPโ(esx)) (exp. Tschebyschaff Inequality)
for (Anโ)nโNโ ind. s.t. โnโNโP(Anโ)=p then n1โโi=1nโ1AiโโโถnโโPโp
for (xnโ)nโNโ iid zufallv., ฮผโR, โโR0+โ s.t. โnโNโEPโxnโ=ฮผ, varPโ(xnโ)=โ2, then n1โโi=1nโxiโ=:x^nโโถnโโPโf.s.โฮผ (P-fast sicher), 5.12;16 (Strong principle of big numbers)
(Anโ)nโNโโA and Aโ:=limsupnโโโ(Anโ), then (i) โnโNโP(Anโ)<โโP(Aโ)=0, (ii) โnโNโP(Anโ)=โ and (Anโ)nโNโ ind. โP(Aโ)=1 (Borel-Cantelli Lemma)
for x1โ,x2โ zufallv. ind.: ฮฆx1โ+x2โโ(y)=ฮฆx1โโ(y)โ ฮฆx2โโ(y)
(3), (4);18
for (xiโ)iโNโ real zufallv. s.t. EPโxiโ=0 and EPโx2<โ then ฮฆx~nโ(y)โถnโโexp(โ21โy2varPโ(x1โ)) 5.15;18
for (xiโ)iโNโ real zufallv. uniformely distr. and ind., for ฮผโR, ฯโR0+โ s.t. EPโxiโ=ฮผ and ฯ=ฯPโ(xiโ), then โa,bโRโaโคbโlimnโโโP(x~nโโ[a,b])=2ฯฯ2โ1โโซabโeโ21โ(ฯxโ)2dx 5.16;18 (Zentrale Grenzwertsatz)
x~nโ:=n1โโi=1nโ(xiโโEPโ(xiโ))
x real zufallv. and distr. LPโ(x) with Dicht e ฮด(y)=2ฯฯ2โ1โexp(โ21โ(ฯyโฮผโ)2), then xโผN(ฮผ,ฯ) 5.17;18 (Normal Distribution)