I followed this course by Prof. Leeb during my3rd_Sem a theLMU. A considerable part of the following notes (and hence of the program of the course) are already present in Analysis II (Lecture), the approach of this lecture was more theoretical (topological).
Pushforward (Wiki): for f:X1ββX2β meas., (X1β,A1β), (X2β,A2β) meas. sp. and ΞΌ:A1ββ[0,β] then the pushf. is the meas fββ(ΞΌ):A2ββ[0,β],A2ββ¦ΞΌ(fβ1(A2β)).
Product Measure
for (Xiβ,Aiβ,ΞΌiβ)iβ[1,n]β, recall A1ββ...βAnββA1ββ ...β A1ββA1ββ...βAnββZ(A1β,...,Anβ).
A1ββ...βAnβ is the Ο-al., the other are equivalent generators.
def. for (Xiβ,Aiβ,ΞΌiβ)iβ[1,n]βΟ-fin. then ΞΌ1ββ...βΞΌnβ is the product measure and (XΓ...ΓX,A1ββ...βAnβ,ΞΌ1ββ...βΞΌnβ)
I.3.4 Lebesgue Measure
Topological Approximation of Measurable Sets
XX
Invariances and Behave under Affine Functions
for Ο:RdβRd aff Οβ(Ξ»d)=β£det(A)1ββ£β Ξ»d
II. Integration Theory
II.1 Integration & Numeral Functions
a num.f, is f:XβR for X a set s.t. (X,A) meas.sp. and R:={ββ,β}βͺR.
B:=B(R) is a Ο-al. generated by:
{[ββ,a):aβR}, also for (ββ,a],[ββ,a]
f:XβR num is meas. ββaβRβ{fβ€a}
{fβ€a}:=fβ1([ββ,a])βA
\mathcal{M}_\overline{\mathbb{R}}(X, \mathcal{A}) are the meas.num.f. on (X,A)
closed under sup, limsup.
MRβ(X,A) are the meas.num.f. on (X,A) s.t. im(f)=R
M[0,β]β(X,A) are the meas.num.f. on (X,A) s.t. im(f)=[0,β]
Approximation trough Step Funcitons
for f step.f. f meas. ββiβIβciβ meas. i.e. each level is meas.
any fβM[0,β]β is a monotone limit of tnββT[0,β]β: tnββf
Regions below Graphs
for f:XβR, f \in \mathcal{M}_\overline{\mathbb{R}} \Leftrightarrow \{(x, y) \in X \times \mathbb{R}: y \le f(x)\} \in \mathcal{A} \otimes \mathcal{B}^1 (prod.Ο-al. of XΓR)
If MβA1ββA2β, then βx1ββX1ββMx1βββA2β and the num.f. X1ββ[0,β],x1ββ¦ΞΌ2β(Mx1ββ)] is meas. (i.e. is in M[0,β]β(X,A1β) and (ΞΌ1ββΞΌ2β)(M)=β«X1ββΞΌ2β(MX1ββ)dΞΌ1β(x1β)).
{x1β}ΓMx1ββ:=Mβͺ({x1β}ΓX2β)
Q (Cavalieri Principle)
fβM[0,β]β(X1βΓX2β,A1ββA2β), then (i) x1ββ¦β«X2ββf(x1β,β )dΞΌ2ββM[0,β]β(X1β,A1β), i.e. is meas., (ii) β«X1βΓX2ββfd(ΞΌ1ββΞΌ2β)=β«X1ββ(β«X2ββf(x1β,β )dΞΌ2β)dΞΌ1β(x1β) (Fubini)
fβM[0,β]β(X1βΓX2β,A1ββA2β)βx1ββ¦β«X2ββf(x1β,β )dΞΌ2β is ΞΌ2β-int. βf(x1β,β ) is ΞΌ2β-int. for x1ββXΞΌ1β-alm.ever.
II.2.5 Transformation of Measures and Integrals
Transformation of Integrals under meas. Functions
for Ο:(X,A)β(Y,B) meas., define Ο:(X,A)β(Y,B) (pullback)
(AβΞΌ[0,β])β¦(ΟβΞΌβ:Bβ[0,β],Mβ¦ΞΌ(Οβ1(M))(=ΟβΞΌβ(M)) (trans. forward of e meas)
(Transformation formulae for integrals under meas. functions)
(i) for fβM[0,β]β(Y,B) holds β«Yβfd(ΟβΞΌβ)=β«Xβ(fβΟ)dΞΌ.
(ii) for fβMRΛβ(Y,B), then f is ΟββΞΌ-int. βfβΟΞΌ-int
hence β«Yβfd(ΟββΞΌ)=β«Xβ(fβΟ)dΞΌ
Transformation of the Lebesgue Measure under Diffeomorphims
recall: for ΟA,rβ aff. ΟA,rβ:RdβRd,xβ¦Ax+r, then (ΟA,rβ)ββΞ²d=β£detAβ£β1Ξ²d
for C1-diffeo. Ο:UβV op. subset of Rd, holds Οββ(Ξ²dβ£Uβ)=β£det(d(Οβ1))β£β Ξ²dβ£Vβ.
for Ο a C1-diffeo. Ο:UβV op. subset of Rd, contain Borel-Nullsets and is Lebesgue-meas. Also Οββ(Ξ»dβ£Uβ)=β£det(d(Οβ1))β£β Ξ»dβ£Vβ
Transformation of Integrals under Diffeomorphisims
for Ο a C1-diffeo. Ο:UβV op. subset of Rd: (Transf. for integrals under diffeos)
and (x,a)β¦(x~(x),βj=1mβ(βi=1mβaβxjβ~ββxiββ(x~(x)))ejβ)
a~=βi=1mβaiβ~βeiβ and a=βi=1mβaiβeiβ
so TβM has the inducted strc. 2m-dim. Ck-mnf. with boundary.
1-form Ξ± on M is lβ€kβ1 cont.diff.func. Ξ±:MβTβM on U iff. for all coeff. Ξ±β£Uβ=βi=1mβaiβdxiβ
for F:MmβNn diff. dFpβ:TpβMβTF(p)βN, then dFpββ:TF(p)ββNβTpββM,Ξ»β¦Ξ»βdFpβ (pullback) and for Ξ± 1-from on N, FβΞ± 1-from on M for (FβΞ±)pβ:=dFpββ(Ξ±F(p)β)=Ξ±F(p)ββdFpβ.
d(yjββFβxβ1)(eiβ)=βxiββyjβββx (also called y(x)) βFβdyjβ=βi=1mβ(βxiββyjβββx)dxiβ
III.5 Higher Dfferential Forms and External Derivatives
For Mm a Cl-mnf- with bound., ΞkTM:=β¨pβMβΞkTpβM:=ΞkβTpββMβ Altkβ(TpβM) (Vectorspace of the alternating k-multilinearforms on TpβM)
Ξ0TM=R, Ξ1TM=TβM, ΞmTM is determinant-lines-bundle
a k-form (or diff.form of deg. k) on M is an inters of the bundels ΟΞkTMβ, Ξ±MββΞkTM s.t. ΟΞkTMββΞ±=idΞkTMββΞ±(p)βΞkTpβMβΞ±(p)βAltkβ(TpβM).
a mixed k-form is on M is an inters. of bundles ΟΞβTMβ s.t. β¦ (the same)
algebraic operations are pointwise (Ξ±+Ξ²)pβ=Ξ±pβ+Ξ²pβ, β¦
for F:MβN, dFpβ:TpββTF(p)βN, then dFpββ:ΞkTF(p)βNβΞkTpβM is lin. and Ξ±k-form on N, then (pulled back k-from on M) FβΞ± is (FβΞ±)(v1β,...,vkβ)=Ξ±F(p)β(dFpβ(v1β),...,dFpβ(vkβ)) for v1β,...,vkββTpβM
for k=m=n F^* dy_1 \land β¦ \land dy_m = det (\frac{\partialy_r}{\partial x_s} \circ x)$ add substripts
synt. all the same for Ξβ instead of Ξk.
External Derivative
the derivative fβ¦df from diff.func. to 1-forms is a diff.operator of first order (ext. der.)
d(fg)=(df)g+f(dg)
ex.uniq. ext. of the total differential on func. to a fam of R-ln. operators s.t.
d(Ξ±β§Ξ²)=(dΞ±)β§Ξ²+(β1)kΞ±β§dΞ² for Ξ± diff.k-form, Ξ² diff.l-fom (product rule)
d2=0 on 2-times diff. forms (if M is Cx for xβ₯2, else on func.) (comp. prop.)
for pβU, UβMβ ex. ΟβC2 s.t. supp(Ο)βU, supp(Ο) comp. (supp), Οβ‘1 cl. to p
for op. d s.t. 1. & 2., Ξ± diff.form on M, pβM then βUβMβpβUββΟβC2(M)βΟ(U)β‘1, d(ΟΞ±)=(dΟ)β§Ξ±+ΟdΞ±, around pd(ΟΞ±)=dΞ±, i.e. (dΞ±)pβ depends on Ξ±(p) (locality)
(dUβΞ±Uβ)pβ:=(dΞ±)pβ
for Ξ±=βi1β<...<ikββai1β,...,ikββdxi1βββ§...β§dxikββ diff. on U then by 1. & 2. we must: dUβ(βi1β<...<ikββai1β,...,ikββdxi1βββ§...β§dxikββ):=βi1β<...<ikββdai1β,...,ikβββ§dxi1βββ§...β§dxikββ
for Ξ±=adxi1βββ§...β§dxikββ, Ξ²=bdxj1βββ§...β§dxjlββ, (prod. rule) dUβ(Ξ±β§Ξ²)=dUβ(abdxi1βββ§...β§dxikβββ§dxj1βββ§...β§dxjlββ)=d(ab)β§dxi1βββ§...=(da)b+a(db)β§dxi1βββ§...
dU2β=dUβ(df)=dUβ(βiββxiββfβdxiβ) for βxiββfβ=βxiββ(fβxβ1)ββx, then (complex property) =βi=1mβ(dβxiββfβ)β§dxiβ=βi,jββxjββxiββ2fβdxjββ§dxiβ=βj<iβ(βxjββxiββ2fβββxiββxjββ2fβ)dxjββ§dxiβ=0
β¦
Recap Linear Algebra
V is m-dim. R-VS., the basis of V are in VΓ...ΓV is open and dense ? has two components
you cannot get from a component to the other without going out of the basis.
ex. for f:R2βR, fβC1(R2), M=Gfβ:={(xyf(x,y)β)β£(x,y)βR2}, a param. Ο:R2βM,(xyβ)β¦(xyf(x,y)β), TpsubβM is the span of the columns of JΟβ(x,y)