SAHLQVIST-VAN BENTHEM ALGORITHM

BASED ON THE NOTES BY IAN HODKINSON AND SECTIONS 3.5-3.6 IN BRV

A boxed atom is a modal formula of the form $\Box^n p$, for some $n \in \mathbb{N}$, where p is a propositional variable, and $\Box^n p$ is defined by the rule: $\Box^0 p = p$, $\Box^1 p = \Box p$, $\Box^{n+1} p = \Box(\Box^n p)$, $n \in \mathbb{N}$.

A simple Sahlqvist antecedent is built from \bot, \top and boxed atoms by applying \Diamond and \land .

A simple Sahlqvist formula is a modal formula of the form $\varphi \to \psi$, where φ is a simple Sahlqvist antecedent and ψ is a positive formula.

A Sahlqvist antecedent is built from \bot, \top , negative formulas and boxed atoms by applying \Diamond and \wedge .

A Sahlqvist implication is a modal formula of the form $\varphi \to \psi$, where φ is a Sahlqvist antecedent and ψ is a positive formula.

A Sahlqvist formula is built from Sahlqvist implications by applying \Box and \lor .

Theorem (Sahlqvist correspondence) For any Sahlqvist formula φ , there is a corresponding first-order sentence that holds in a frame iff φ is valid in the frame.

This sentence can be obtained from φ by a simple Sahlqvist-van Benthem algorithm. For simplicity we will consider only the case of simple Sahlqvist formulas.

Let φ be a simple Sahlqvist formula.

- (1) Identify boxed atoms in the antecedent.
- (2) Draw the picture that discusses the minimal valuation that makes the antecedent true. Name the worlds involved by t_0, \ldots, t_n .
- (3) Work out the minimal valuation i.e., get a first-order expression for it in terms of the named worlds.
- (4) Work out the standard translation of φ . Use the names you fixed for the variables that correspond to \Diamond 's in the antecedent.
- (5) Pull out the quantifiers that bind t_i variables in the antecedent to the front. For this use the equivalences

$$\exists x \alpha(x) \land \beta \leftrightarrow \exists x(\alpha(x) \land \beta),$$

 $\exists x \alpha(x) \to \beta \leftrightarrow \forall x(\alpha(x) \to \beta).$

- (6) Replace all the predicates P(x), Q(x), etc., with the first-order expression corresponding to the minimal valuation.
- (7) Simplify, if possible.
- (8) Add $\forall x$ (binding the free variable of the standard translation) to the resulting first-order formula to obtain the global first-order correspondent.

We will look at a few examples.

Let $\varphi = \Box p \to p$.

The diagram:

$$x \longrightarrow x$$

The minimal valuation is $V(p) = \{z : Rxz\}.$

The standard translation of φ is $\forall y(Rxy \to P(y)) \to P(x)$.

Replace P(y) with Rxy and P(x) with Rxx. We obtain $\forall y(Rxy \rightarrow Rxy) \rightarrow Rxx$.

This is equivalent to Rxx. By adding $\forall x$ we obtain the global first-order correspondent

$\forall xRxx \text{ reflexivity!}$

Let $\varphi = \Box p \to \Box \Box p$.

The diagram:

The minimal valuation is $V(p) = \{z : Rxz\}.$

The standard translation of φ is

$$\forall y(Rxy \to P(y)) \to \forall z(Rxz \to \forall u(Rzu \to P(u)))$$

Replace P(y) with Rxy and P(u) with Rxu. We obtain

$$\forall y(Rxy \to Rxy) \to \forall z(Rxz \to \forall u(Rzu \to Rxu))$$

This is equivalent to

$$\forall z(Rxz \to \forall u(Rzu \to Rxu))$$

which is equivalent to

$$\forall z \forall u (Rxz \land Rzu \to Rxu)$$

By adding $\forall x$ we obtain the global first-order correspondent

 $\forall x \forall z \forall u (Rxz \land Rzu \rightarrow Rxu)$ transitivity!

Let $\varphi = \Box \Box p \to \Box p$.

The diagram:

The minimal valuation is $V(p) = \{z : \exists v(Rxv \land Rvz)\}$. The standard translation of φ is

$$\forall y(Rxy \to \forall z(Ryz \to P(z))) \to \forall u(Rxu \to P(u)))$$

Replace P(u) with $\exists v(Rxv \land Rvu)$. In the antecedent we can replace P(z) with the minimal valuation, but let us note that the instantiation of the standard translation of boxed atoms always gives us a tautology.

We obtain

$$\forall u(Rxu \to \exists v(Rxv \land Rvu))$$

By adding $\forall x$ we obtain the global first-order correspondent

 $\forall x \forall u (Rxu \rightarrow \exists v (Rxv \land Rvu))$ density!

Let $\varphi = \Diamond \Box p \to p$.

The diagram:

The minimal valuation is $V(p) = \{z : Rtz\}.$

The standard translation of φ is

$$\exists t(Rxt \land \forall z(Rtz \to P(z))) \to P(x)$$

Pull out the existential quantifier in the antecedent. We obtain

 $\forall t(Rxt \land \forall z(Rtz \to P(z)) \to P(x))$

Replace P(z) with Rtz and P(x) with Rtx. We obtain

$$\forall t(Rxt \land \forall z(Rtz \to Rtz) \to Rtx)$$

This is equivalent to

$$\forall t(Rxt \to Rtx)$$

By adding $\forall x$ we obtain the global first-order correspondent $\forall x \forall t (Rxt \rightarrow Rtx)$ symmetry!

Let $\varphi = p \to \Diamond p$.

The diagram:

The minimal valuation is $V(p) = \{z : x = z\}.$

The standard translation of φ is

$$P(x) \to \exists y (Rty \land P(y))$$

x

Replace P(y) with x = y and note that the instantiation of the standard translation of boxed atoms is a tautology. We obtain

$$\exists y (Rxy \land y = x)$$

This is equivalent to

Rxx

By adding $\forall x$ we obtain the global first-order correspondent

 $\forall xRxx \text{ reflexivity!}$

Let $\varphi = \Diamond \Diamond p \to \Diamond p$.

The diagram:

The minimal valuation is $V(p) = \{z : t_2 = z\}.$

The standard translation of φ is

$$\exists t_1(Rxt_1 \land \exists t_2(Rt_1t_2 \land P(t_2))) \to \exists y(Rxy \land P(y))$$

Pull out the existential quantifiers in the antecedent. We obtain

 $\forall t_1 \forall t_2((Rxt_1 \land Rt_1t_2 \land P(t_2)) \to \exists y(Rxy \land P(y)))$

Replace P(y) with $t_2 = y$ and note that the instantiation of the standard translation of boxed atoms is a tautology. We obtain

$$\forall t_1 \forall t_2((Rxt_1 \land Rt_1t_2) \to \exists y(Rxy \land (y=t_2))))$$

This is equivalent to

$$\forall t_1 \forall t_2 ((Rxt_1 \land Rt_1t_2) \to Rxt_2)$$

By adding $\forall x$ we obtain the global first-order correspondent

 $\forall x \forall t_1 \forall t_2 ((Rxt_1 \land Rt_1t_2) \rightarrow Rxt_2)$ transitivity!

If φ is a Sahlqvist formula, say $\Box(\varphi \to \psi) \lor \Box(\varphi' \to \psi')$ (where $\varphi \to \psi$ and $\varphi' \to \psi'$ are simple Sahlqvist formulas), then draw a diagram where outer \Box 's are treated as \Diamond 's of simple Sahlqvist formulas and \lor is treated as \land of simple Sahlqvist formulas.

Let $\varphi = \Box(\Box p \to q) \lor \Box(\Box q \to p)).$

The diagram:

The minimal valuation is $V(p) = \{z : Rt_1z\}$ and $V(q) = \{z : Rt_2z\}.$

The standard translation of φ (keeping in mind t_1 and t_2) is

$$\forall t_1(Rxt_1 \to (ST_{t_1}(\Box p) \to Q(t_1))) \lor \forall t_2(Rxt_2 \to (ST_{t_2}(\Box q) \to P(t_2)))$$

Pull out the quantifiers and replace $Q(t_1)$ with Rt_2t_1 and $P(t_2)$ with Rt_1t_2 . Note again that the instantiation of the standard translation of boxed atoms gives a tautology.

We obtain

$$\forall t_1 \forall t_2 ((Rxt_1 \to Rt_2t_1) \lor (Rxt_2 \to Rt_2t_1))$$

which is equivalent to

$$\forall t_1 \forall t_2 ((Rxt_1 \land Rxt_2) \to (Rt_1t_2 \lor Rt_2t_1))$$

By adding $\forall x$ we obtain the global first-order correspondent

$$\forall x \forall t_1 \forall t_2 ((Rxt_1 \land Rxt_2) \rightarrow (Rt_1t_2 \lor Rt_2t_1))$$
 linearity!

Let $\varphi = \Box (\Box p \to p)$.

The diagram:

The minimal valuation is $V(p) = \{z : Rtz\}.$

The standard translation of φ (keeping in mind t) is

$$\forall t(Rxt \to (ST_t(\Box p) \to P(t)))$$

Replace P(t) with *Rtt*. Note again that the instantiation of the standard translation of boxed atoms gives a tautology.

We obtain

$$\forall t(Rxt \to Rtt)$$

By adding $\forall x$ we obtain the global first-order correspondent

 $\forall x \forall t (Rxt \rightarrow Rtt)$ every successor is reflexive!