
nat.scm

Simone Testino

November 2023

Simone Testino nat.scm

Introduction

The library nat.scm is the one containing all axioms, theorems and
definitions on natural numbers. In particular it is composed by:

Definition of the Algebra

Definitions of Program Constants

Theorems

We will give a look of example of all of those.

Simone Testino nat.scm

Introduction

More precisely we will give a look at:

Definition of type nat

NatPlus, NatLe, NatLeast, Choose, NatF

NatPlusComm, NatLeTrans, NatLeCases, CVIndPvar, CVInd

Each of the theorems will come with proof in natural language and
the Minlog code.

Simone Testino nat.scm

Define nat

(add-algs "nat" ’("Zero" "nat") ’("Succ" "nat=>nat"))

(add-var-name "n" "m" "l" (py "nat"))

;l instead of k, which will be an int

We define the type with the already familiar (tutor: 6.4) command
(add-algs "nat" ’("Zero" "nat") ’("Succ" "nat=>nat"))

which creates an algebra with constructors Zero and Succ.

Simone Testino nat.scm

Program Constants: NatPlus

Program Constants require first to be added through:
(add-program-constant "NatPlus" (py "nat=>nat=>nat"))

Then, in order to have a more familiar notation we add:
(add-display (py "nat") (dc "NatPlus" "+" ’add-op))

Finally we define its meaning through computational rules:
(add-computation-rules

"n+0" "n"

"n+Succ m" "Succ(n+m)")

Simone Testino nat.scm

Program Constants: NatPlus

The computational rules of NatPlus together with the other
assumptions of nat.scm enable us to make proofs, the following is
a brief example:
(set-goal "all n,m n+m=m+n")

(assume "n")

(ind)

(use "Truth")

(assume "m" "IH")

(use "IH")

Simone Testino nat.scm

Program Constants: NatPlus

Claim. ∀n,m∈Nn +m = m + n.
Proof. Consider a natural number n, then by induction we wish to
prove that the statement above holds for all m, in order to do so,
we have two claims: n + 0 = 0 + n and that
n +m = m + n → n +m + 1 = m + 1 + n. In order to prove the
induction start we use the computation rule stating that both sides
are equal n. In order to prove the induction step, we first take one
m and assume the induction hypothesis, then notice that by the
second computation rule we conclude the proof.

Simone Testino nat.scm

NatLe

Proceed similarly and define ≤:
(add-program-constant "NatLe" (py "nat=>nat=>boole"))

(add-display (py "boole") (dc "NatLe" "<=" ’rel-op))

(add-computation-rules

"0<=n" "True"

"Succ n<=0" "False"

"Succ n<=Succ m" "n<=m")

We wish now to prove transitivity NatLeTrans.

Simone Testino nat.scm

NatLeTrans

Before starting with the proof, I list some relevant commands:

(strip) will be used to assume all quantified variables and
antecedents.

(cases) divides the proof into two possible cases, one when
an object is assumed to be 0 and the other when the object is
assumed to be a successor

"EfAtom" is just like the assumption Efq but only for atomic
fromulae.

Simone Testino nat.scm

NatLeTrans

We first clearly need to proceed by induction, hence we consider
have now the two goals ϕ(0) and ϕ(n) → ϕ(n + 1) for ϕ the
transitivity of ≤.
First consider ϕ(0) = ∀m,l(0 ≤ m → m ≤ l → 0 ≤ l). First
instantiate m and l and then assume bot 0 ≤ m and m ≤ l (all in
the command (strip)), finally notice that 0 ≤ l trivially holds,
hence the claim is proved.
Now consider the claim ϕ(n) → ϕ(n + 1). Instantiate n and
assume ϕ(n), then consider the two cases (i) where m = 0 (ii)
where m is a successor.
Consider the case where m = 0, namely:
n+ 1 ≤ 0 → 0 ≤ l → n+ 1 ≤ l . Notice that the first antecedent is
always false, hence the material implication is always true, then
conclude 0 ≤ l → n + 1 ≤ l ((assume "Absurd"). Then assume
the antecedent (0 ≤ l) and in order to prove the consequent,
derive it from the absurd assumption Succ n <= 0 using EfAtom.

Simone Testino nat.scm

NatLeTrans

Consider now (ii.i), for m a successor (starts from (assume "m"),
now again, consider two cases (ii.i) where l = 0 and (ii.ii) where l
is a successor.
Consider the case l = 0, namely
n + 1 ≤ m + 1 → m + 1 ≤ 0 → n + 1 ≤ 0, notice that both
m + 1 ≤ 0 and n + 1 ≤ 0 cannot be the case, hence antecedent
and consequent of the last material implication are always false,
hence the implication is true.
Consider the case (ii.ii), namely
n + 1 ≤ m + 1 → m + 1 ≤ l + 1 → n + 1 ≤ l + 1 and this
corresponds to ϕ(n) that we assumed, hence the claim is proved.
All four goals (i), (ii), (ii.i) and (ii.ii) are achieved, hence the
induction step is also concluded.

Simone Testino nat.scm

NatLeCases

Two other lemmas of nat.scm will be usefull in the next proof, I
present here the claims.
The lemma "NatLeAntiSym" states all n,m(n<=m -> m<=n ->

n=m), namely that n ≤ m, m ≤ n ⊢ m = n.
The lemma "NatNotLtToLe" states all n,m((n<m -> F) ->

m<=n), namely that ¬n < m ⊢ m ≤ n.
Claim. ∀n,m(n ≤ m → (n < m → φ) → (n = m → φ) → φ)

Simone Testino nat.scm

NatLeCases

Proof. First instantiate n and m and assume the antecedent
n ≤ m, now consider two cases (i) n < m and (ii) ¬n < m.
Consider the case where n < m, then we assume the antecedents
and get the assumptions n < m → φ and (n = m → φ and the
goal φ which follows from the first assumption directly (use-with

"THyp" "Truth").
Now consider the case ¬n < m, again assume the antecedents and
we get the assumptions: m ≤ m (from before), ¬n < m,
n = m → φ and the goal φ, we use the last assumption and get
the only goal n = m. We use then the antisymmetry (with
"NatLeAntiSym") of ≤ to prove that m ≤ n together with n ≤ m
(which we have already) would give us the goal (with
"NatNotLtToLe"), and we can prove m ≤ n from the fact that we
know ¬n < m, then proof finished.

Simone Testino nat.scm

NatLeast

This program constant takes as input a natural number n and a
property on natural numbers ps, namely an element of type nat
=>boole. The output of this function is the least number less than
n such that ps holds. Clearly this function is defined recursively
and therefore we analyse the case of when it is applied to 0 and to
a successor Succ n.
(add-program-constant "NatLeast" (py

"nat=>(nat=>boole)=>nat")) (add-computation-rules

"NatLeast 0 ps" "0"

"NatLeast(Succ n)ps"

"[if (ps 0) 0 (Succ(NatLeast n([m]ps (Succ m))))]")

Simone Testino nat.scm

Transformation of an Injection to a Permutation

Claim. One can always expand an injection f : X → Y s.t.
|X | = |Y | to a bijection.
1st Proof. Let f : X → Y be an injection, then define F : X → Y
s.t. F (x) = f (x) and for y ̸∈ f (X),
∃x∈X (F (x) = y ∧ ∀y1∈f (X)y ̸= y1).
Notice that this proof does not construct F , instead, I gave
conditions that F must respect and only proved that that family of
functions is non-empty. Though, picking one such function in
particular requires the Axiom of Choice and therefore the proof is
to be labelled as non-constructive. Hence, such a proof could not
be inserted in Minlog.

Simone Testino nat.scm

Transformation of an Injection to a Permutation

2nd Proof. Let f : [0, n] → Y be an injective function s.t. Y ⊆ N.
Let k + 1 be the least number s.t. k + 1 ̸∈ f ([0, n]) (for that use
NatLeast). Note that since f is injective k ≥ n, hence we have
two cases: (i) k = n, in such a case, f would already be bijective
since f injective and |f ([0, n])| = |[0, n]|, hence take σ = f and (ii)
k > n. In this latter case, proceed by finite recursion by taking the
least element in [0, k], call it y s.t. ¬∃x∈[0,n]f (x) = y (again use
NatLeast), then define σ(y) = n + j for j the step of the
recursion. For a last and finite j equal to k − n, we have
constructed a bijection σ : [0, k] → [0, k] which can then be
expanded to σ∞ : N → N by simply extending it with idN.

Simone Testino nat.scm

Induction

I am about to prove two lemmas on induction: CVIndPvar and
CVInd.
Those two proof differ in the use of ((Pvar nat)m) and ps m,
the former is a non-computable predicate variable, though the
latter is an element of type nat => bool. Hence the difference
here lays in whether a computable procedure to determine the
predicate for each variable has been given or not.

Simone Testino nat.scm

CVIndPvar

Let’s see ome unfamiliar commands first:
Note that the first antecedent stands for the assumption that from
⊥ we can derive the desired statement, a weakening of the general
“Ex Falso Quodlibet”
The command (assert "...") adds a new goal and sets it as an
antecedent of the present goal.
Claim. (⊥ → ∀n(φ(n))) → ∀n(∀m<n(φ(m)) → φ(n)) → ∀nφ(n).

Simone Testino nat.scm

CVIndPvar

Proof. First assume the antecedent (with (assume "efq")), then
assume also ∀n∀m<n(φ(m)) → φ(n) and keep ∀nφ(n) as a goal.
Now claim ∀n,m(m < n → φ(m)) (with (assert "...")), and
proceed proving it by induction on n. First note that the induction
start, ∀m(m < 0 → φ(m)), follows trivially from falsity of the
antecedent m < 0 (with (assume "m" "Absurd")).
On the induction step of the claim, namely:
(∀m<n → φ(m)) → ∀mm < n + 1 → φ(m), simply assume both
antecedents: ∀m<n → φ(m) and ∀mm < n + 1 and set the goal to
∀mϕ(m). Now consider the cases (i) m = n and (ii) m < n, we can
do that since we know that m < n + 1 holds (use "m < Succ

n").

Simone Testino nat.scm

CVIndPvar

Consider (ii) where m < n, then prove ϕ(m) thanks to
∀mm < n → φ(m), the induction hypothesis.
Now consider (i), assume m = n and keep the goal φ(m), use the
assumption Prog to get ∀m<nφ(m) and conclude the case.
Now we go back to the assumption made trough (assert

"..."), claiming that the assertion proves our former goal,
namely: ∀n,m(n < m → φ(m)) → ∀nφ(n). After assuming the
antecedent (assume "Assertion"), we can use it instantiating
m = n + 1 to get the claim.

Simone Testino nat.scm

CVInd

Claim. ∀ϕ∀n(∀m(m < n → φ(m)) → φ(n)) → ∀nφ(n)
Proof. Assume the antecedent and call it Prog, then assert

∀n,mm < n → φ(m), now I have to both prove the assertion and
that it implies ∀nφ(n), the previous goal.
In order to prove the assertion proceed by induction on n, goals
now are induction start and induction step. Induction start has
m < 0 as an antecedent and results therefore trivially true (with
(use "Absurd")). For the induction step first assume the
antecedents, the goal will be φ(m), then, with NatLtSuccCases

distinguish (i) m = n and (ii) m < n thanks to (use "m < Succ

n").
The case (ii) is solved thanks to the induction hypothesis, for case
(i), assume m = n and set the goal φ(m), through Prog we get the
goal ∀m<nφ(m), which is again proved by the induction hypothesis.
Left to prove is only the fact that the assertion proves the previous
goal, namely: ∀n,m(m < n → φ(m)) → ∀nφ(n). Assume the
assertion and use it setting m = n + 1 and the proof is concluded.

Simone Testino nat.scm

Binomial Coefficients

This program constant implements the binomial coefficients, the
constant is added as a function of type nat => nat => nat and
defined recursively.
Choose (binomial coefficients) added

(add-program-constant "Choose" (py "nat=>nat=>nat"))

(add-computation-rules

"Choose Zero Zero" "Succ Zero"

"Choose Zero(Succ m)" "Zero"

"Choose(Succ n)Zero" "Succ Zero"

"Choose(Succ n)(Succ m)"

"Choose n m+Choose n(Succ m)")

The Zero case defines
(0
0

)
= 1, then we have

(0
m+1

)
= 0 and(n+1

0

)
= 1, finally

(n+1
m+1

)
=

(n
m

)
+
(n
m+1

)
. those computation rules

define by induction the program constants as the binomial
coefficients we are familiar with.

Simone Testino nat.scm

Factorial

Finally consider the faculty function of type nat => nat defined
by recursion.
(add-program-constant "NatF" (py "nat=>nat"))

(add-computation-rules

"NatF Zero" "Succ Zero"

"NatF(Succ n)" "NatF n*(Succ n)")

The two computational rules needed to define this function are
0! = 1 and (n + 1)! = n! · (n + 1).
The theorem NatTimesChooseNatF that claims:

(n
k

)
= n!

k!·(n−k)!
has been proved.

Simone Testino nat.scm

